Optimized amplitude modulated multiband RF pulse design
نویسندگان
چکیده
PURPOSE Multiband pulses are characterized by highly temporally modulated waveforms. Rapid phase or frequency modulation can be extremely demanding on the performance of radiofrequency (RF) pulse generation, which can lead to errors that can be avoided if pulses are restricted to amplitude modulation (AM) only. In this work, three existing multiband pulse design techniques are modified to produce AM waveforms. THEORY AND METHODS Multiband refocusing pulses were designed using phase-optimization, time-shifting, and root-flipping. Each technique was constrained to produce AM pulses by exploiting conjugate symmetry in their respective frequency domain representations. Pulses were designed using the AM and unconstrained techniques for a range of multiband factors (ie, number of simultaneously excited slices), time-bandwidth products, and slice separations. Performance was compared by examining the resulting effective pulse durations. Phantom and in vivo experiments were conducted for validation. RESULTS Acquired data confirmed that AM pulses can produce precise results when unconstrained designs may produce artifacts. The average duration of AM pulses is longer than the unconstrained versions. Averaged across a range of parameters, the duration cost for AM pulses was 26, 38, and 20% for phase-optimizing, time-shifting and root-flipping, respectively. CONCLUSIONS Amplitude modulation multiband pulses can be produced for a relatively small increase in pulse duration. Magn Reson Med 78:2185-2193, 2017. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
منابع مشابه
Wavelet Domain Radiofrequency Pulse Design Applied to Magnetic Resonance Imaging
A new method for designing radiofrequency (RF) pulses with numerical optimization in the wavelet domain is presented. Numerical optimization may yield solutions that might otherwise have not been discovered with analytic techniques alone. Further, processing in the wavelet domain reduces the number of unknowns through compression properties inherent in wavelet transforms, providing a more tract...
متن کاملEffect of Pulse-Modulated GSM-900 MHz Electromagnetic Field on the Electrochemotherapy Efficacy of 4T-1 Cells
Introduction: Electrochemotherapy (ECT) is a cancer treatment modality to permeabilize cell membrane facilitating the non-permeant molecules to gain access to the cytosol of cells. Nevertheless, environmental electromagnetic fields (EMFs) may disturb the efficiency of ECT. The present study aimed to investigate the effect of EMFs 900 MHz pulse-modulated by 217 Hz extremely low-frequency fields ...
متن کاملOptimal control design of constant amplitude phase-modulated pulses: application to calibration-free broadband excitation.
An optimal control algorithm for generating purely phase-modulated pulses is derived. The methodology is applied to obtain broadband excitation with unprecedented tolerance to RF inhomogeneity. Design criteria were transformation of Iz-->Ix over resonance offsets of +/-25 kHz for constant RF amplitude anywhere in the range 10-20 kHz, with a pulse length of 1 ms. Simulations transform Iz to grea...
متن کاملZTE imaging with enhanced flip angle using modulated excitation.
PURPOSE Zero echo time (ZTE) imaging is a fast, robust, and silent three-dimensional technique for direct MRI of tissues with rapid transverse relaxation. It is conventionally performed with hard, block-shaped excitation pulses short enough to excite spins uniformly over a large bandwidth. With this approach, the achievable flip angle (FA) is limited by the available B1 amplitude. The purpose o...
متن کاملReduced Peak Power Dualband VSS Pulse Design
Introduction: Spectroscopic imaging based on conventional 3D PRESS localization is improved by using very selective suppression (VSS) pulses for outer volume suppression [1]. Cosine-modulated VSS pulses can be used to simultaneously suppress two parallel bands [2] but doubles the required peak RF amplitude. This abstract presents an efficient method for designing a dualband VSS pulse that requi...
متن کامل